Relatività e Meccanica Quantistica: concetti e idee

Relativity and Quantum Mechanics: concepts and ideas

Approfondimenti #1

Carlo Cosmelli

Di cosa parleremo

Qualche richiamo formale:

- Grandezze fisiche.
- Grandezze scalari e vettoriali.
- Somma e differenza di vettori.
- La notazione esponenziale, esempi.
- Ordini di grandezza.

Grandezze fisiche

Una grandezza fisica è una proprietà di un fenomeno, di un corpo o di una sostanza che può essere espressa mediante un **numero** e un'**unità di misura**.

Grandezze fisiche	Grandezze non fisiche
massa	simpatia
volume	bellezza
temperatura	amore
velocità	bontà
•••	•••

Grandezze scalari e vettoriali

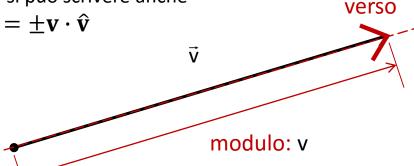
Una grandezza **scalare** può essere espressa con un solo **numero** e un'**unità di misura**.

Una grandezza **vettoriale** è caratterizzata da più numeri, in genere da una **direzione**, un **verso** e un'**intensità**: è un **vettore**.

Grandezze scalari	Grandezze vettoriali	
massa	velocità	
carica elettrica	forza	
temperatura	accelerazione	
volume	campo elettrico	
	•••	

Cos'è un vettore?

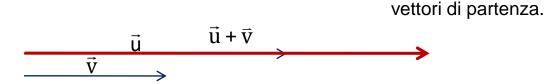
Un vettore ha un modulo, una direzione e un verso, dunque si rappresenta come un segmento orientato.


Un vettore è definito da tre caratteristiche:

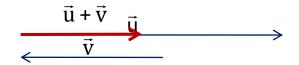
- il modulo del vettore, proporzionale all'intensità della grandezza rappresentata dal vettore;
- la **direzione** del vettore, cioè la retta su cui giace;
- il **verso** del vettore, cioè l'orientazione del vettore sulla retta.

Il vettore si può scrivere anche

come: $\overline{\mathbf{v}} = \pm \mathbf{v} \cdot \hat{\mathbf{v}}$



La somma dei vettori

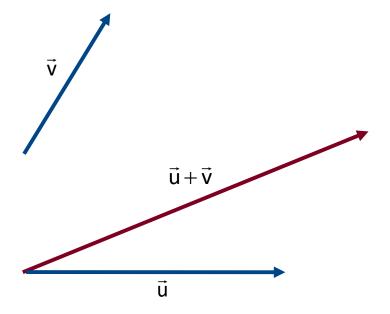

ad esempio

Stessa direzione, stesso verso

ad esempio

Stessa direzione, verso opposto

Se i vettori hanno stessa direzione ma verso opposto il vettore somma è la differenza dei moduli... sarà più corto di entrambi i vettori di partenza


Se i vettori hanno stessa direzione e

stesso verso il vettore somma è la somma

dei moduli... sarà più lungo di entrambi i

La somma dei vettori: il metodo "punta-coda"

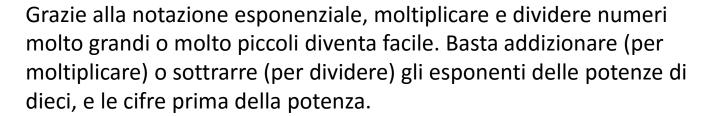
Per sommare due o più vettori con direzione qualunque si fa coincidere la "punta" di un vettore con la "coda" del vettore successivo nella somma:

La notazione esponenziale

ENICZ

Utilizzando le potenze di 10 e le loro proprietà è possibile scrivere numeri molto grandi o molto piccoli, quindi con molti "zeri", in modo compatto.

ad esempio


$$2000 = 2 \cdot 10^3$$
$$0.0005 = 5 \cdot 10^{-4}$$

Nella notazione esponenziale ogni numero si rappresenta come una cifra compresa tra 1 e 10 moltiplicata per una potenza di 10

ad esempio

$$5589 = 5.589 \cdot 10^3$$

 $0.000392 = 3.92 \cdot 10^{-4}$

La notazione esponenziale

ad esempio

$$\frac{4000}{0.02} = \frac{4 \cdot 10^3}{2 \cdot 10^{-2}} = \frac{4}{2} \frac{10^3}{10^{-2}} = 2 \cdot 10^{3 \cdot (-2)} = 2 \cdot 10^5$$

$$4000 \cdot 0.02 = 4 \cdot 10^{3} \cdot 2 \cdot 10^{-2} = (4 \cdot 2) \cdot 10^{3-2} = 8 \cdot 10^{1} = 80$$

Esempio: il calcolo della massa della Terra

ad esempio

Se un oggetto con una massa **m** pari a 1 kg viene attratto dalla Terra con un peso **p** pari a 9.8 N, possiamo calcolare la massa della terra **M** conoscendo il raggio della Terra **R**, la costante di gravitazione **G** e la legge della gravitazione universale

R = 6.36 · 10⁶ m
$$G = 6.67 \cdot 10^{-11} \frac{Nm^2}{kg^2}$$
 $p = G \frac{mM}{R^2}$

Il calcolo della massa della Terra

ad esempio

Usando la formula inversa:
$$M = \frac{pr^2}{Gm}$$

si può calcolare la massa della Terra (con la notazione scientifica):

$$M = \frac{(6.36 \cdot 10^6)^2 \cdot 9.8}{6.67 \cdot 10^{-11}} \frac{m^2 N}{(Nm^2/kg^2) \cdot kg} = \frac{6.36^2 \cdot 9.8}{6.67} \frac{10^{12}}{10^{-11}} kg = 5.97 \cdot 10^{24} kg$$

Ordine di grandezza

L'ordine di grandezza di un numero è la potenza di 10 più vicina a quel numero.

ad esempio

L'ordine di grandezza di 2000 è 10^3 perché la potenza di 10 più vicina a 2000 è $1000 = 10^3$.

L'ordine di grandezza di 80000 è **10**⁵ perché la potenza di 10 più vicina a 80000 è 100000 = 10⁵.

Ordini di grandezza: esempi utili

Oggetto	Massa	Ordine di grandezza
elettrone	9.11 · 10 ⁻³¹ kg	10 ⁻³⁰ kg
protone	1.67 · 10 ⁻²⁷ kg	10 ⁻²⁷ kg
granello di sabbia	0.3-1.3 · 10 ⁻⁶ kg	10 ⁻⁶ kg
1 cm³ di acqua	1 · 10 ⁻³ kg	10 ⁻³ kg
1 litro di acqua	1 kg	10 ⁰ kg
Ferrari F1	6 · 10 ² kg	10³ kg
Stazione spaziale internazionale	1.87 · 10 ⁵ kg	10 ⁵ kg
atmosfera terrestre	5 · 10 ¹⁸ kg	10 ¹⁸ kg
Sole	2 · 10 ³⁰ kg	10 ³⁰ kg

Ordini di grandezza: esempi utili

Fenomeno	Durata	Ordine di grandezza
tempo di Planck	5.4 · 10 ⁻⁴⁴ s	10 ⁻⁴⁴ s
reazione retina umana	6 · 10 ⁻¹² s	10 ⁻¹² s
ciclo CPU da 1 GHz	1 · 10 ⁻⁹ s	10 ⁻⁹ s
vita media del muone	2.2 · 10 ⁻⁶ s	10 ⁻⁶ s
battito di palpebra	5-8 · 10 ⁻² s	10 ⁻¹ s
anno Terrestre	$3.16 \cdot 10^7 \mathrm{s}$	10 ⁷ s
età Homo Sapiens	10 ¹² s	10 ¹² s
estinzione dinosauri	2 · 10 ¹⁵ s	10 ¹⁵ s
età della Terra	1.4 · 10 ¹⁷ s	10 ¹⁷ s
età dell'universo	4.3 · 10 ¹⁷ s	10 ¹⁷ s

Ordini di grandezza: esempi utili

Oggetto	dimensione	Ordine di grandezza
lunghezza di Planck	1.6 · 10 ⁻³⁵ m	10 ⁻³⁵ m
quark (diametro)	10 ⁻¹⁸ m	10 ⁻¹⁸ m
atomo di idrogeno	1.1 · 10 ⁻¹⁰ m	10 ⁻¹⁰ m
Dna (diametro dell'elica)	2 · 10 ⁻⁹ m	10 ⁻⁹ m
capello (diametro)	8 · 10 ⁻⁵ m	10 ⁻⁴ m
uomo (altezza)	1,8 m	10 ⁰ m
Everest (altezza)	8.8 · 10 ³ m	10 ⁴ m
Distanza Terra-Luna	3.84 · 10 ⁸ m	10 ⁸ m
Distanza Terra-Sole	1.50 · 10 ¹¹ m	10 ¹¹ m
Via Lattea (diametro)	1.5-1.8 · 10 ²¹ m	10 ²¹ m

